141 research outputs found

    Enhanced Lasso Recovery on Graph

    Get PDF
    This work aims at recovering signals that are sparse on graphs. Compressed sensing offers techniques for signal recovery from a few linear measurements and graph Fourier analysis provides a signal representation on graph. In this paper, we leverage these two frameworks to introduce a new Lasso recovery algorithm on graphs. More precisely, we present a non-convex, non-smooth algorithm that outperforms the standard convex Lasso technique. We carry out numerical experiments on three benchmark graph datasets

    Structured Sequence Modeling with Graph Convolutional Recurrent Networks

    Full text link
    This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed

    Matrix Completion on Graphs

    Get PDF
    The problem of finding the missing values of a matrix given a few of its entries, called matrix completion, has gathered a lot of attention in the recent years. Although the problem under the standard low rank assumption is NP-hard, Cand\`es and Recht showed that it can be exactly relaxed if the number of observed entries is sufficiently large. In this work, we introduce a novel matrix completion model that makes use of proximity information about rows and columns by assuming they form communities. This assumption makes sense in several real-world problems like in recommender systems, where there are communities of people sharing preferences, while products form clusters that receive similar ratings. Our main goal is thus to find a low-rank solution that is structured by the proximities of rows and columns encoded by graphs. We borrow ideas from manifold learning to constrain our solution to be smooth on these graphs, in order to implicitly force row and column proximities. Our matrix recovery model is formulated as a convex non-smooth optimization problem, for which a well-posed iterative scheme is provided. We study and evaluate the proposed matrix completion on synthetic and real data, showing that the proposed structured low-rank recovery model outperforms the standard matrix completion model in many situations.Comment: Version of NIPS 2014 workshop "Out of the Box: Robustness in High Dimension

    FMA: A Dataset For Music Analysis

    Full text link
    We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fmaComment: ISMIR 2017 camera-read

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks

    Robust Principal Component Analysis on Graphs

    Get PDF
    Principal Component Analysis (PCA) is the most widely used tool for linear dimensionality reduction and clustering. Still it is highly sensitive to outliers and does not scale well with respect to the number of data samples. Robust PCA solves the first issue with a sparse penalty term. The second issue can be handled with the matrix factorization model, which is however non-convex. Besides, PCA based clustering can also be enhanced by using a graph of data similarity. In this article, we introduce a new model called "Robust PCA on Graphs" which incorporates spectral graph regularization into the Robust PCA framework. Our proposed model benefits from 1) the robustness of principal components to occlusions and missing values, 2) enhanced low-rank recovery, 3) improved clustering property due to the graph smoothness assumption on the low-rank matrix, and 4) convexity of the resulting optimization problem. Extensive experiments on 8 benchmark, 3 video and 2 artificial datasets with corruptions clearly reveal that our model outperforms 10 other state-of-the-art models in its clustering and low-rank recovery tasks
    • …
    corecore